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ABSTRACT

Recording P- and S-wave modes acquires more information
related to rock properties of the earth’s interior. Elastic migra-
tion, as a part of multicomponent seismic data processing, po-
tentially offers a great improvement over conventional acoustic
migration to create a spatial image of some medium properties.
In the framework of elastic reverse time migration, we have de-
veloped new scalar and vector imaging conditions assisted by
efficient polarization-based mode decoupling to avoid crosstalk
among the different wave modes for isotropic and transversely
isotropic media. For the scalar imaging, we corrected polarity
reversal of zero-lag PS images using the local angular

attributes on the fly of angle-domain imaging. For the vector
imaging, we naturally used the polarization information in the
decoupled single-mode vector fields to automatically avoid the
polarity reversal and to estimate the local angular attributes for
angle-domain imaging. Examples of increasing complexity in
2D and 3D cases found that the proposed approaches can be used
to obtain a physically interpretable image and angle-domain
common-image gather at an acceptable computational cost. De-
coupling and imaging the 3D S-waves involves some complexity,
which has not been addressed in the literature. For this reason, we
also attempted at illustrating the physical contents of the two sep-
arated S-wave modes and their contribution to seismic full-wave
imaging.

INTRODUCTION

Due to the elastic nature of the earth media, seismic waves propa-
gate through it as a superposition of P- and S-wave modes. An
S-wave passing through an anisotropic medium splits into two mu-
tually orthogonal waves. In general, the P-wave and the two S-waves
in anisotropic materials do not polarize parallel or perpendicular to
the wave vectors; therefore, they are called quasi-P (qP) and quasi-S
(qS) waves. Unlike the well-behaved qP mode, the two qS modes do
not consistently polarize as a function of the propagation direction
and thus cannot be designated as qSV- and qSH-waves, except in
transversely isotropic (TI) media (Winterstein, 1990; Crampin,
1991). Recording all wave modes through multicomponent seismic
acquires more information related to rock properties and thus pro-
vides better subsurface imaging and more accurate estimation of res-
ervoir characteristics (Stewart et al., 2002).
Most of the approaches proposed in the literature perform elastic

imaging by Kirchhoff migration (Kuo and Dai, 1984) or reverse

time migration (RTM) (Chang and McMechan, 1986; Yan and
Sava, 2008). The ray-based elastic Kirchhoff method is efficient
but it is limited when dealing with many wave-related phenomena
(Gray et al., 2001). RTM is a well-established migration technique
that creates a spatial image of the subsurface. Based on the full-
wave equation, it is free from high-frequency assumption (as Kirch-
hoff migration) and dip-angle limitation (as one-way wave-equation
migration). Early attempts at elastic RTM (ERTM) apply the exci-
tation-time imaging condition to the reconstructed wavefields, in
which the arrival times from the source to the image point are cal-
culated by ray tracing (Chang and McMechan, 1986). The standard
RTM procedure generally applies crosscorrelation (or deconvolution)
imaging condition with zero lag in space and time (Claerbout, 1985)
to the reconstructed source and receiver wavefields in the subsurface.
For ERTM, however, a simple component-by-component crosscorre-
lation leads to the artifacts caused by crosstalk among the unseparated
wave modes, which makes it difficult to interpret the images in terms
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of pure modes (e.g., PP or PS) reflections. Therefore, Yan and Sava
(2008) suggest using a set of imaging conditions that combines the
various incident and reflected potentials separated by the Helmholtz
decomposition.
Recently, there has been a renewed interest in common-image

gathers (CIGs) and various approaches have been proposed to com-
pute angle-domain CIGs for RTM. These techniques can be catego-
rized into two main classes: postimaging and preimaging. In general,
the postimaging algorithms based on the extended imaging condition
(Biondi and Symes, 2004; Sava and Fomel, 2006) are more attractive
from a computational perspective, whereas the preimaging algo-
rithms that estimate the local directions of the extrapolated wavefields
before or at the time of applying the imaging condition (Yoon and
Marfurt, 2006; Xu et al., 2011; Yan and Xie, 2012; Wang andMcMe-
chan, 2015) are considered more flexible (Vyas et al., 2011). An
available scheme in preimaging category is to decompose the normal
zero-lag RTM image into angle/azimuth bins according to the local
propagation direction obtained from the Poynting vector (Yoon and
Marfurt, 2006; Dickens and Winbow, 2011). It is important to note
that the Poynting vector gives the direction of energy propagation.
Therefore, it points in the direction of the group-velocity vector in
anisotropic media. Yan and Xie (2012) provide a method to construct
angle gathers in isotropic elastic media based on the local Fourier
transform, which is considered very accurate. Zhang and McMechan
(2011b) and Wang and McMechan (2015) propose a method to es-
timate the incident P-wave direction based on the wavefields polari-
zation that derived from the separation solution of Ma and Zhu
(2003) for isotropic media. Zhang and McMechan (2011a) also ex-
tend it to 2D VTI (transversely isotropic with a vertical symmetry
axis) media by taking the qP-wave polarization direction that con-
tains in the vector qP-wavefields as the phase direction.
However, these efforts still have many limitations for angle-

domain ERTM in anisotropic media. First, wave mode separation
in heterogeneous anisotropic media is prohibitively expensive, be-
cause the operators involved are dependent on the medium param-
eters, and thus, the operators are not stationary (Yan and Sava,
2009). This is why Zhang and McMechan (2011b) choose to apply
the excitation imaging condition instead of the crosscorrelation
imaging condition to the single mode wavefield separated by a local
Fourier transform operation in their ERTM algorithm for 2D VTI
media. To map the RTM images into angle bins efficiently, they
ignore the deviation between the polarization and the phase direc-
tions of qP-wave in VTI media. In fact, in an anisotropic medium, it
is necessary to distinguish between the group (or the polarization)
direction and the phase direction (Tsvankin et al., 2001), because
reflection properties are governed by the phase angle (Dickens and
Winbow, 2011; McGarry and Qin, 2013; Wang et al., 2014).
Our motivation of this paper is to study new imaging conditions

of ERTM using polarization-based wave mode decoupling for
isotropic and TI media. We propose a scalar imaging condition and
a vector imaging condition that apply to the decoupled scalar and
vector wavefields, respectively. For clarity, we call the scalar (or
scalarized) wavefields involved imaging condition scalar imaging
and the vector wavefields involved imaging condition vector imag-
ing in this paper. Both imaging conditions are extended to get
incident phase angle-domain CIGs according to the group or polari-
zation direction of the decoupled wavefields. Synthetic examples
demonstrate the validity of the proposed approaches for simple
and complex TI models.

ELASTIC WAVEFIELD DECOUPLING

The RTM algorithm consists of two consecutive steps: the wave-
fields reconstruction and the application of an imaging condition.
For prestack depth migration, source and receiver wavefields must
be reconstructed at all locations in the subsurface, given the actual
seismic recordings and source function on the acquisition surface.
The imaging condition evaluates the match between wavefields re-
constructed from the sources and receivers. For ERTM, a simple
component-by-component crosscorrelation imaging condition leads
to the artifacts caused by crosstalk among the unseparated wave
modes. To obtain physically interpretable images, wave mode de-
coupling before the application of the imaging condition is essential
for ERTM (Dellinger and Etgen, 1990; Yan and Sava, 2008). In
general, wave mode decoupling in elastic media can be classified
into three categories: the Helmholtz(-like) decomposition, polariza-
tion-based scalar separation, and polarization-based vector decom-
position (Zhang and McMechan, 2010).

The Helmholtz(-like) decomposition

In isotropic media, the separation of the elastic far-field displace-
ment wavefields u ¼ fux; uy; uzg by the divergence and curl oper-
ators is given as (Aki and Richards, 2002):

PðxÞ ¼ ∇ · uðxÞ; SðxÞ ¼ ∇ × uðxÞ; (1)

where x ¼ ðx; y; zÞ represents the spatial coordinate and
∇ ¼ ð∂∕∂x; ∂∕∂y; ∂∕∂zÞ. The separated P and S are scalar and vec-
tor potential wavefields, respectively. Equation 1 has the wavenum-
ber-domain equivalent form:

~PðkÞ ¼ ik · ~uðkÞ; ~SðkÞ ¼ ik × ~uðkÞ; (2)

where i ¼ ffiffiffiffiffiffi
−1

p
, k ¼ ðkx; ky; kzÞ represents a vector parallel to the

direction of wave propagation (namely wave vector). The variable
with “∼” denotes the corresponding wavefield in the wavenumber
domain. Dellinger and Etgen (1990) extend the Helmholtz decom-
position into anisotropic media through substituting the wave vector
k by the qP-wave polarization vector aP yielding

q ~PðkÞ ¼ iaPðkÞ · ~uðkÞ; q ~SðkÞ ¼ iaPðkÞ × ~uðkÞ: (3)

The polarization vector of the qP-wave can be obtained by solving
the Christoffel equation (see Appendix A). Note that the Helmholtz
(-like) decomposition separates the original wavefield into a scalar
qP-wavefield and a vector qS-wavefield, and the separated qS-wave
contains all non-qP parts of the elastic wavefields.

Polarization-based decoupling

The polarization orthogonality among the wave modes intrinsi-
cally provides a general framework to decouple the far-field elastic
body waves (Dellinger and Etgen, 1990; Yan and Sava, 2009; Zhang
and McMechan, 2010). For TI media, the S-waves can be designated
as qSV-wave (polarizes in the symmetry-axis planes) and qSH-wave
(polarizes in the isotropy planes) (Winterstein, 1990). Based on the
polarization information, the original elastic wavefield can be de-
coupled into either scalar or vector wavefield of the corresponding
wave mode.

S384 Wang et al.
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For instance, in the wavenumber domain, a single wave mode can
be separated by projecting the wavefields onto the direction in
which it polarizes:

~umðkÞ ¼ iāmðkÞ · ~uðkÞ; (4)

where umðm ¼ fqP; qSV; qSHgÞ represents the separated scalar
wavefield; āmðkÞ stands for the unit polarization vector of different
wave modes, which is amðkÞ normalized by jamðkÞj and thus is
dimensionless. Unlike the Helmholtz(-like) decomposition, the
polarization-based separation decouples the shear wavefield into
two scalar fields.
Vector decomposition aims at separating the elastic wavefields

into vector fields of each mode. For example, we can achieve this
by using the following polarization-based vector decomposition:

~umðkÞ ¼ āmðkÞ½āmðkÞ · ~uðkÞ�; (5)

for homogeneous media in the wavenumber domain (Zhang and
McMechan, 2010). Note that the above decomposition honors
the following linear superposition relation:

~uðkÞ ¼ ~uqPðkÞ þ ~uqSVðkÞ þ ~uqSHðkÞ (6)

for TI media. The decomposed single-modewavefields have the same
amplitude, polarization, phase, physical meaning, and the units as
those in the original elastic wavefields (Zhang andMcMechan, 2010).
To solve the equations 4 and 5, the calculation of polarization

vector of each mode is required. The determina-
tion of the polarization directions is based on
solving the Christoffel equation and using the
polarization orthogonality among different wave
modes (Appendix A). The qSV- and qSH-waves
are restricted to polarize in symmetry axis plane
and isotropy plane, respectively. For general TI
media, the direction of the symmetry axis may
be not along the vertical axis and spatially varies
with wave propagation. Therefore, qSH-waves
may not horizontally polarize and qSV-waves
may not polarize in the vertical plane. These
two S-waves own different phase velocities ex-
cept in the directions of shear singularities. As
investigated by Crampin and Yedlin (1981), a
TI material only has the line and kiss singular-
ities. A line singularity occurs only at a fixed an-
gle from the symmetry axis and causes no
distortion of phase velocity surfaces or polariza-
tion phenomena, whereas a kiss singularity oc-
curs only along the symmetry axis and causes
no distortion of phase-velocity surfaces but re-
sults in rapid variations of qS-wave polarizations.
To mitigate the artifacts due to the kiss singular-
ity, we taper the polarization vector of two S-
waves at the vicinity of the symmetry axis using
the polar angle information.
A 3D numerical experiment demonstrates the

decoupling of two S-wave modes. Figure 1 shows
the synthetic vector elastic wavefield snapshots
within a two-layer VTI model. The background
parameters are VP0¼3000m∕s, VS0¼2000m∕s,

ρ ¼ 2000 g∕cm3, ϵ ¼ 0.2, δ ¼ 0.1, and γ ¼ 0.15, and a mass den-
sity perturbationΔρ ¼ 300 g∕cm3 is added in the bottom to make an
interface with dip angle of 135° strikes toward the y-axis. The grid
size of the model is 201 × 201 × 201 with a spatial increment of
10 m. To prevent the S-wave causing reflection, a pure qP-source
(Wang et al., 2015b) is excited at the center of this model. Figure 2
shows the reflected qSVand qSHwavefields separated by equation 4.
They respectively polarize in and perpendicular to the plane defined
by the symmetry axis and polarization direction of the incident
qP-wave. Of fundamental importance is that the qSH- and qSV-
waves are not completely equivalent to qS1- and qS2-waves, respec-
tively. As shown in Figure 3, the decomposed two S-waves own
exactly the same amplitude compared with the original elastic wave-
field. As shown in Figure 4, the qSV-wave can be converted from qS2
to qS1 mode at a certain oblique propagation angle (where the line
singularity happens), whereas the qSH-wave can be converted from
qS1 to qS2 mode likewise. In addition, the original elastic wavefield
also can be decomposed into vector wavefield of each wave mode by
equation 5.
For isotropic media, the polarization directions are independent

of medium parameters, so the corresponding mode separation can
be efficiently implemented as a stationary spatial filtering. In this
case, equation 4 automatically reduces to the divergence operation
for P-wave. For S-wave, however, the propagation velocity is
constant no matter in which direction it polarizes. Therefore, the
polarization of S-wave owns singularity at every point during the
propagation (Tsvankin et al., 2001). To make the polarization-based

Figure 1. The 3D wavefield modeling in VTI media: (a) model geometry, the black dot
indicates the source coordinate, panels (b-d) are x-, y-, z-component of vector original
elastic wavefield at the time of 0.95 s, respectively. Despite the artifacts caused by im-
perfect PML, the reflected S-wave splits into two S-waves.
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mode decoupling work for the S-waves when the medium changes
from TI to isotropic, we have to artificially give a symmetry axis for
the isotropic medium to define the polarization directions for qSV-
and qSH-waves. In practice, most of the horizons in the subsurface
are horizontally layered. Accordingly, we assume this “symmetry-
axis” always vertical. In other words, the polarization vectors of
qSV- and qSH-waves are defined based on the propagation direction
of P-wave and the z-axis, namely,

āSH¼D−1ð−k̄y; k̄x;0Þ; and āSV¼D−1ðk̄xk̄; k̄yk̄z; k̄2z −1Þ;
(7)

where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̄2x þ k̄2y

q
.

Efficient solution

For heterogeneous TI media, the polarization-based mode decou-
pling is prohibitively expensive because the operations become
nonstationary filtering, which is locally determined by the material-
dependent polarization directions. The computational complexity of
the straightforward implementation isOðNxÞ2, where the Nx denotes

the grid size of the model. To break this computational bottleneck,
Cheng and Fomel (2014) rewrite equations 4 and 5 as mixed-domain
Fourier integral operation (FIO) of the general form, respectively,

umðxÞ ¼
Z

eikxiāmðx; kÞ · ~uðkÞdk (8)

and

umðxÞ ¼
Z

eikxāmðx; kÞ½āmðx; kÞ · ~uðkÞ�dk; (9)

where the integral kernel matrices are based on the medium param-
eters and the wave vector. By applying low-rank decomposition
to these mixed-domain matrices, we can achieve very efficient
mode separation and vector decomposition for ERTM application.
The computational cost is based on the model size, the desired
accuracy, and complexity of the kernel matrix of the FIOs (implicitly
depending on the heterogeneity and anisotropy strength of the TI
media). Mathematically, the computational complexity reduces to
OðNNx log NxÞ, where N represents the rank of decomposed
mixed-domain matrix. Usually, the N is less than 10 (Cheng and Fo-
mel, 2014).
Taking the previous 3D model as an example, it takes 55.2 s to

simulate the elastic wavefield by using a 10th-order staggered-grid
finite-difference (FD) algorithm (Virieux, 1986) with a single thread
for one time step on average. As shown in Figure 5, it takes approx-
imately 25.1 s to separate the simulated elastic waves into three
(namely qP, qSV, and qSH) scalar wavefields, and approximately
50.7 s into three vector wavefields. The time cost for precalculation
of matrix decomposition by the low-rank method (offline calcula-
tion) is not counted here. Similar with constructing time table in the
ray-based migration method, once the offline calculation has been
done, the results are available for every time step. Meanwhile, the
dimension of the decomposed matrix is much smaller than the model
size thus does not require too much I/O. During application of the
imaging condition for ERTM, it is feasible to decouple the wave
mode in every several time steps.

SCALAR IMAGING OF DECOUPLED WAVE
MODES

The scalar imaging condition is based on the scalar wavefields of
single wave mode. To our knowledge, most of the existing ERTM
approaches apply imaging condition to the scalar (or scalarized)
wavefields separated by the Helmholtz decomposition theory (equa-
tion 1) (Sun et al., 2006; Yan and Sava, 2008; Du et al., 2014). In the
2D case, the direction of the curl vector is perpendicular to the plane
of the 2D model, so there is only one component for the separated
S-wave. This is why many authors treat the 2D S-wave as a scalar
field to produce the PS or SP image (Denli et al., 2008; Yan and
Sava, 2008; Zhang andMcMechan, 2011a). In 3D/3C, the separated
S-wave by using the curl operation is a 3C vector, which means
there is no single-signed scalar value to uniquely express it.
This causes difficulty when we apply a crosscorrelation imaging
condition to the two potential fields unless a scalarization is applied
to the S-wavefield (Sun et al., 2006; Du et al., 2014) or a vectori-
zation is applied to the P-wavefield (Duan and Sava, 2015). But it is
cumbersome to appropriately scalarize or vectorize the potential
and accurately assign its sign at every spatial point in complicated

Figure 2. Separated scalar qS-waves: (a) qSV-wave and (b) qSH-
wave. It is obvious that the two S-waves have different propagation
velocity.
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elastic wavefields. Thus, the divergence and curl operations are not
suitable to extend the imaging condition to obtain a 3D converted-
wave image that is comparable with the PP image.

Scalar imaging condition

To extend the ERTM into anisotropic media, Zhang and McMe-
chan (2011b) choose to apply an excitation imaging condition.
However, the previous studies showed that the crosscorrelation im-
aging condition is considered stable and amplitude friendly (Chat-
topadhyay and McMechan, 2008; Costa et al., 2009). Thanks to the
fast algorithm based on low-rank decomposition of the mixed-do-
main matrices in the FIOs for polarization-based mode decoupling,
we achieve scalar imaging for TI media using

ImnðxÞ ¼
Z

tmax

0

usmðx; tÞurnðx; tÞdt; (10)

where usm and urn represent the single-mode source and receiver
wavefields, respectively. For example, zero-lag crosscorrelating
usqPðx; tÞ with urqSVðx; tÞ produces the image for PS-waves. A nor-
malization factor representing source illumination can be added to
the above imaging condition to improve the image quality (Mittet
et al., 1995). Recall that this crosscorrelation imaging condition is
different from those applied to the potential fields (Wapenaar et al.,
1987; Yan and Sava, 2008).

Mapping zero-lag images into incident phase angles

To generate angle-domain CIGs, we should map and stack the
zero-lag ERTM image into the local incident phase angle/azimuth
bins at the image point. There are three normalized vectors associated
with a local reflection orientation: the incident (phase) slowness vec-
tor in the source wavefield ps, the scattering (phase) slowness vector
in the receiver wavefield pr, and the unit vector representing the di-
rection normal to the geologic interface. Although it is possible to
estimate the local angle attributes using the incident and scattering
slowness vectors at the image point (Xu et al., 2011; Cheng et al.,
2012), we tend to calculate them using the incident slowness vector
and reflector normal because the receiver wavefield is more compli-
cated than the source wavefield or the reflector shape. First, we apply
the plane-wave destruction filter (Fomel, 2002) to the stacked PP
image to calculate the normal direction of the reflectors. Then, we
estimate the incident Poynting vector w at the time of maximum
energy flow te using (Cerveny, 2005):

wiðx; teÞ ¼ −σijðx; teÞvjðx; teÞ; (11)

with

teðxÞ ¼ tjmax½EððxÞ; tÞ�; (12)

where σij and vj denote the stress and particle velocity, respectively.
The mechanical energy E is calculated by

Figure 3. Decomposed vector qS-waves: (a) x-, (b) y-, and (c) z-component of qSV-wave and (d) x-, (e) y-, and (f) z-component of qSH-wave.
Due to the qSH-wave being polarized in the horizontal plane in 3D VTI media, it has a null vertical component.
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Eðx; tÞ ¼ 1

2
ρv2i ðx; tÞ þ

1

2
σijðx; tÞϵijðx; tÞ; (13)

with the first term on the right side standing for the kinetic energy and
the second standing for the potential energy of the source wavefield;
ρ and ϵij represent the mass volume density and strain fields, respec-
tively. The Poynting vector is equivalent to the group direction, with
ðsin α cos β; sin α sin β; cos αÞ ¼ ðwx; wy; wzÞ∕jwj for the 3D case
or ðsin α; cos αÞ ¼ ðwx; wzÞ∕jwj for the 2D case, where α and β are
open angle from the z-axis and the azimuth angle of the group di-
rection, respectively. Because reflection properties are governed by
the phase angle (Thomsen, 1986; Tsvankin et al., 2001), an additional

adjustment from the group to phase angle is needed for TI media.
Then, we calculate the incident phase angle with respect to the nor-
mal direction of the reflector. Finally, we obtain the angle-domain
CIGs by stacking the zero-lag ERTM image into the incident phase
angle bins for all shots.

Polarity reversal in converted wave scalar imaging

Elastic wave polarization contains the geometric properties of par-
ticle motion, including trajectory shape and spatial orientation.
Polarization of a separated body wave in a noise-free perfectly elastic
medium is linear, and the motion has polarity (Winterstein, 1990).
The change in wavelet polarity is a fundamental feature of converted
waves due to the vector nature of the displacement field. Therefore,
one difficulty when imaging the converted waves is the polarity
change of the S-wave at a certain incident angle, which results in
destructive contribution during stacking. It cannot be automatically
addressed once the vector S-wave has been scalarized after mode sep-
aration or during application of the imaging condition. Many authors
suggest preprocessing the S-wavefield with a reasonable sign (Balch
and Erdemir, 1983; Denli et al., 2008; Du et al., 2014). In fact, the
local angle-domain provides a natural domain to address this because
the sign of a converted wave depends on the incident direction with
respect to the interface normal (Rosales and Rickett, 2001; Lu et al.,
2010). Therefore, we flip the sign of the converted-wave image at
negative incident angles to correct the polarity reversal. For clarity,
we demonstrate the workflow of angle-domain ERTM using cross-
correlation imaging condition to the decoupled scalar wavefields in
Figure 6.

VECTOR IMAGING OF DECOUPLED WAVE
MODES

To take full advantage of the vector information (e.g., polarization
and polarity) of the elastic wavefields, we propose a new imaging
condition based on vector decomposition of the elastic wavefields
for isotropic and TI media in this section.

Vector imaging condition

Vector decomposition decouples the elastic wavefields into vec-
tor fields of single wave mode, which owns the same polarization,

Figure 4. Polarization vectors of 3D qS-waves in the previously used
VTI medium: (a) qS1- and (b) qS2-wave. Note that the qS1- and qS2-
waves distinguished by phase velocity do not have continuous polari-
zation and they can be designated as qSH- and qSV-waves, which
have consistent polarization as a function of propagation direction.
Modified from Figure 9 in Cheng and Kang (2016).

Figure 5. The computational cost of the polarization-based decou-
pling in a single time step of the 3D VTI model (in Figures 1–3).
The low-rank decomposition approximate the mixed-domain matrix
with relative single-precision of 1e−4. None of the parallel algo-
rithms are used for accelerating computation.
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polarity, amplitude, and phase of the counterpart in the original elas-
tic wavefields. Following the investigation by Wang et al. (2015a),
we propose a crosscorrelation imaging condition to the single-mode
source and receiver wavefields in vector form:

ImnðxÞ ¼
1

γ

Z
tmax

0

½usmðx; tÞ · urnðx; tÞ�dt; (14)

with the scale factor γ defined by

γ ¼
Z

tmax

0

½esmðx; tÞ · ernðx; tÞ�dt; (15)

using the unit polarization vectors of the source and receiver wave-
fields esm and ern to balance the migration amplitude.
The single-mode vector field separated from the source wave-

fields contains correct polarization information. Hence, we calcu-
late the incident polarization direction at the time of maximum
energy using the direction cosines as follows:

ðsin θ cos φ; sin θ sin φ; cos θÞ
¼ ðumsx; umsy; umszÞ∕juðmÞ

s j (16)

for 3D or

ðsin θ; cos θÞ ¼ ðumsx; umszÞ∕juðmÞ
s j; (17)

for 2D, where θ and φ represent the open angle
from the z-axis and azimuth angle of polarization
direction. Then, we transform the incident polari-
zation angles to phase angles using the relationship
between them (Tsvankin et al., 2001). Finally, we
map and stack the zero-lag ERTM image into the
incident phase angle bins for all shots. To our
interest, vector imaging condition, intrinsically ex-
ploiting polarity information, can give the correct
sign of the converted-wave images. Therefore, cor-
rection of polarity reversal is excluded in the work
flow of angle-domain ERTM using the crosscorre-
lation imaging condition for the decoupled vector
wavefields (see Figure 7).

NUMERICAL EXAMPLES

We demonstrate the scalar and vector imaging
approaches of ERTM with 2D and 3D synthetic
data sets. The first two examples involve simple
layered VTI models, and the third involves a com-
plex VTI model. A 10th-order explicit staggered-
grid FD algorithm is used to extrapolate the source
and receiver wavefields. A perfectly matched
layer (PML) absorbing boundary is used around
the calculation area. We use the Laplacian filter
(Mulder and Plessix, 2004) to suppress the low-
wavenumber noise in the ERTM image. Regard-
ing the receiver wavefields reconstruction, if only
the data of particle velocity and dipole back-
propagating sources are used, two types of wave-
field artifacts will occur. First, all injected energy

will upward and downward propagate unlike it truly comes from;
second, any kind of events in recordings emit P and S energy simul-
taneously when injected for backward extrapolation (Yan and Sava,
2007). To mitigate the contamination from these artifacts, we com-
bine the stress-velocity data and quadrupole-dipole back-propagating
sources as a new top boundary condition for receiver wavefield re-
construction (Mittet, 1994; Ravasi and Curtis, 2013).

A two-layer 2D VTI model

A simple two-layer model is shown in Figure 8a with horizontal
and dipping interfaces. The parameters are VP0 ¼ 2400 m∕s,
VS0 ¼ 1400 m∕s, ϵ ¼ 0.2, and δ ¼ 0.18 in the first layer, and
VP0 ¼ 3200 m∕s, VS0 ¼ 1800 m∕s, ε ¼ 0.18, and δ ¼ 0.16 in the
second layer. A total of 101 common-shot gathers are synthesized
for migration. Figure 8b and 8c shows the snapshots of x- and
z-component of original vector elastic wavefields of the 51st shot
located at x ¼ 500 m and z ¼ 10 m. With an exploding source, the

Figure 6. Workflow of angle-domain ERTM using crosscorrelation imaging condition
with the decoupled scalar wavefields for TI media.

Figure 7. Workflow of angle-domain ERTM using crosscorrelation imaging condition
with the decoupled vector wavefields for TI media.
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source and receiver wavefields are mixed with qP- and qSV-wave
modes. Consequently, the divergence and curl operations cannot
achieve complete mode decoupling, whereas the polarization-based
projection produces very clean single-mode scalar fields (see Fig-
ure 9). As shown in Figure 10, if polarization-based vector decom-
position is applied, we achieve amplitude-preserved wave mode
decoupling. On the single-shot ERTM images (Figure 11), migra-
tion artifacts related to the leaking mode are evident if the diver-
gence and curl operations are used. Fortunately, the polarization-
based mode separation and vector decomposition lead to very clean
PP and PS images. Note that unlike the scalar imaging condition,

the vector imaging condition produces PS image free of polarity
reversal.
For mapping the zero-lag ERTM images into the incident angle

domain, we have to transform the calculated group direction (using
Poynting vector) or polarization direction (contained in the decom-
posed vector fields) to phase direction at the time of the maximum
mechanical energy te. During the wavefield extrapolation, if the
mechanical energy is larger than the previous time step on a certain
spatial grid, we calculate and update the corresponding incident
Poynting vector. Therefore, the storage of original elastic wavefield
is not necessary. Due to the limitation of the cache memory, how-
ever, the decoupled wavefield of a single mode is stored into disk
memory. As demonstrated in Figure 12, the transform from the group
(or polarization) angle to phase angle is nontrivial because the maxi-
mum deviation is approximately 9° between group and phase direc-
tions and approximately 7° between polarization and phase directions
for the incident qP-wave of the 51st shot.
As demonstrated in Figure 12b, the numerically estimated group

and polarization angles from the extrapolated source wavefields
match well with those calculated using the analytical relations be-
tween the group (or polarization) angle and the phase angle (Tsvan-
kin et al., 2001).
Figure 12c shows that the transformed phase angles from the

group (or polarization) angles are accurate, so can be used in an-
gle-domain imaging. On the angle-domain CIGs stacked from the
101 shots zero-lag ERTM images, we observe migration artifacts

Figure 9. Separated scalar qP-wave in source wavefield by using
(a) the divergence operation and (b) the polarization-based scalar
projection.

Figure 8. Snapshots of elastic wavefields from the source side in a
two-layer VTI model: (a) Geometry of the model, (b) x-, and (c) z-
component.
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Figure 11. PP (top) and PS (bottom) ERTM images of the 51st shot respectively using scalar wavefields separated by the divergence and curl
operators (left) and polarization-based scalar projection (middle), and vector wavefields separated by polarization-based vector decomposition
(right). Note the migration artifacts due to mode-leaking in the shallow parts of left two pictures.

Figure 10. Decoupled vector qP-wave modes in
the source wavefield using polarization-based vec-
tor decomposition: (a) x- and (b) z-component of
qP-wave. A single trace extracted at x ¼ 600 m
for (c) x- and (d) z-component from the original
and decoupled source wavefields. The orange solid
lines indicate the total elastic wavefields (extracted
from Figure 8b and 8c), and the black dash lines
indicate the decoupled elastic wavefields.
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on PP and PS images due to mode leaking related to the divergence
and curl operations (Figure 13a and 13d). The polarity reversal of
PS images occurs within the scalar imaging result (Figure 13e).
The angle-domain vector imaging produces very accurate and

clean CIGs and automatically avoids polarity reversal for con-
verted wave imaging. To obtain correctly stacked PS images,
we apply the proposed approach to address polarity reversal in
the angle-domain scalar imaging workflow. As observed by Lu
et al. (2010), stacking of multiple sources can mitigate the migra-
tion artifacts from mode leaking with respect to the divergence and
curl operations. For this simple model, the two workflows produce
very similar stacked images, we only show the final PP and PS
images using the vector imaging condition (see Figure 14).

A three-layer 3D VTI model

A three-layer VTI model with horizontal and dipping interfaces
(Figure 15a) is used to demonstrate the proposed methods in 3D case.
The first layer is a homogeneous VTI media with VP0 ¼ 2000 m∕s,
VS0 ¼ 1328 m∕s, ϵ ¼ 0.05, δ ¼ 0.03, and γ ¼ 0.02. The second is a
homogeneous and isotropic medium, which has the parameters VP ¼
2300 m∕s and VS¼1628m∕s. The third is also a homogeneous
VTI medium, which has the parameters VP ¼ 2600 m∕s, VS ¼
1928 m∕s, ϵ ¼ 0.10, δ ¼ 0.06, and γ ¼ 0.04. On the top surface,
we trigger nine exploding sources, which are symmetrically distrib-
uted like a 3 × 3 array around the center with an increment of 50m. A
Ricker wavelet with peak frequency is 15 Hz is chosen as the source
function. Despite the artifacts resulting from the aperture limitation,
the scalar and vector imaging algorithms produce comparable PP im-
ages (Figure 15b and 15e). For the PS image, the vector imaging
algorithm uses the polarity information and automatically avoids
the polarity reversal.

A complex 2D VTI model

To illustrate the proposed methods in complex media, we modify
the Marmousi-2 model (Martin et al., 2006) to create a hetero-
geneous VTI model (Figure 16). We take the original P-wave veloc-
ity as the vertical qP-wave velocity and generate the vertical qSV-
wave velocity using a scaling: VP0∕VS0 ¼ 1.7. The two Thomson
parameters increase linearly in depth with ε ∈ ½0; 0.13� and
δ ∈ ½0; 0.11�, respectively. A total of 300 shots are simulated on the
surface from x ¼ 250 to 9250 m with a shot spacing of 30 m. As
shown in Figures 17 and 18, the angle-domain scalar imaging based
on polarization-based mode separation produces very good PP im-
age and flatten angle-domain CIGs within −45° to 45°. But the po-
larity reversal shown on the CIGs leads to destructive interference
during stacking of PS images from multiple sources. Fortunately,
the proposed correction of polarity reversal in the local angle-
domain greatly improves the final PS images (see Figure 17b).
Moreover, high-quality ERTM images and angle-domain CIGs are
obtained by using the vector imaging condition, which is directly
applied to the decoupled source and receiver wavefields with polari-
zation-based vector decomposition (Figures 19 and 20). This com-
plex example further proves that the vector imaging condition
automatically avoids the issue of polarity reversal.

DISCUSSION

Wave mode decoupling is a prerequisite for elastic imaging of
multicomponent seismic data to produce physically interpretable
images. However, the polarization-based scalar mode separation
lose the polarity information because it only produces the scalar
P- and S-wavefields. If the scalar imaging is used, polarity reversal

Figure 12. Transformation between group (or polarization) and
phase angles for the incident qP-wave at the time of the maximum
energy: (a) estimated phase angles; (b) angle comparison among
group, polarization and phase angle (the dotted lines are estimated
from the wavefield, and the solid lines are the analytical solution);
and (c) transformation from group and polarization angle to phase
angle.
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of converted-wave image will occur and the corresponding correc-
tion is indispensable. The correction amounts to a spatial operation
depending on the incident angle, the interface normal, or energy
flux direction at every image point (Du et al., 2012, 2014; Duan
and Sava, 2015). Vector decomposition relies on more computation
cost compared with scalar separation, but achieves accurate wave
mode decoupling, and thus preserves the polarity information for
each mode. Therefore, the converted-wave images produced by the
vector imaging are immune to polarity reversal. If a S-wave source
is triggered, based on the orthogonality among three wave modes
and the direction of symmetry axis, the polarization direction of
qP-wave also can be determined from the decoupled either qSV-
or qSH-wavefields. Then, it can be transformed into incident phase
direction as we discussed above. Meanwhile, the potential-based
3D ERTM method (Du et al., 2014; Duan and Sava, 2015) can
be easily extended to TI media if the low-rank approximate solution
of equation 3 is used.
To our knowledge, the term “vector imaging” is first named by

Xie and Wu (2005) in their paper that describes a prestack depth
migration approach using the one-way elastic wave propagator.

During imaging, they first project the single-mode downgoing and
upgoing vector wavefields onto their local polarization directions
and then apply the crosscorrelation imaging condition to the resulted
(namely scalarized) wavefields. They estimate the unit polarization
vectors at the image point from the frequency-space-domain wave-
fields, although this is not straightforward (as they pointed out). In
addition, wavefield extrapolation and mode coupling (to construct
converted waves) are only designed for isotropic media in the frame-
work of one-way wave propagation, and P/S separation of the multi-
component seismogram is needed before depth extrapolation of the
wavefields. Alternatively, Zhang and McMechan (2011a) develop
a direct vector-field method to obtain angle-domain CIGs from
isotropic acoustic and elastic RTM. However, this approach needs
extension for 3D anisotropic media because it does not distinguish
polarization and phase directions in estimating the incident phase
angle.
For isotropic and TI media, polarization-based projection decou-

ples the elastic wavefields into three wave modes using their polari-
zation orthogonality. It is easy to separate the compressional mode
because it has well-behaved polarization properties. Decoupling the

Figure 13. Angle-domain CIGs of reflected PP- (top) and PS-wave (bottom) at the location of x ¼ 500 m: scalar imaging condition based on
the Helmholtz decomposition (right) and polarization-based mode separation (middle), and vector imaging condition based on polarization-
based vector decomposition (right).
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two shear modes in the 3D case, however, involves complexity on
conceptual and methodological aspects. For instance, we designate
the two qS-waves in a TI medium as qSV and qSH modes, which
have consistent polarization as a function of propagation direction
except at the kiss singularity. The polarization direction of the
qSH mode is defined perpendicular to the plane determined by
the symmetry axis and qP-wave polarization direction, and then
the polarization direction of the qSV mode is determined through
the polarization directions of qP and qSH modes, on the base of the
qP-qSV-qSH polarization orthogonality. For isotropic media, how-
ever, people prefer to designate 3D S-wave as SV and SH modes.
The SV-wave coupled with P-wave polarizes in the incident plane
(instead of the symmetry-axis plane as in TI media), whereas the

Figure 15. The ERTM experiment on a 3D VTI model with horizontal and dipping interfaces: (a) model geometry; (b) qP-qP, (c) qP-qSV, and
(d) qP-qSH images using scalar imaging condition; (e) qP-qP, (f) qP-qSV, and (g) qP-qSH images using vector imaging condition. Only nine
synthetic common-shot records are used for migration.

Figure 16. Vertical qP-wave velocity of a modified Marmousi-2
model.

Figure 14. Final migrated PP (a) and PS (b) results of all 101
shots.
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SH-wave polarizes orthogonally to this plane. Note that the incident
plane is determined by the incident wave vector and the local inter-
face normal. To make the polarization-based projection work when
the medium changes from TI to isotropic, we have assumed that the
isotropic medium has a hypothetical “symmetry axis” in the vertical
direction. Physically, SH-wave is automatically decoupled from qP-
and qSV-waves. In this paper, however, qSV-waves may be numeri-
cally decomposed into a qSVand a qSH component because the nor-
mal of local interface is not considered during the wave mode
decoupling. For the qSV-wave reflected or converted from an inter-
face, its decomposed qSH component is nonnull, unless the normal of
the local interface is parallel with the symmetry axis. Generally, the
decomposed qSV and qSH components have a contribution to qS-
wave imaging. For TI media, investigation and integration of these
two S-wave images may provide new opportunity for seismic imag-
ing and medium parameter estimation because the polarization prop-
erties of the qSV and qSH modes are material dependent.

Figure 17. Final migrated results using the scalar imaging condi-
tion based on polarization-based mode separation: (a) PP image and
PS images (b) with and (c) without correction of polarity reversal.
White arrows indicate the improvements after correcting polarity
reversal.

Figure 18. Angle-domain CIGs at x ¼ 2; 3; 5; 7, and 8 km using the
scalar imaging condition based on polarization-based mode separa-
tion: (a) PP and (b) PS CIGs (the polarity has not been corrected).

Figure 19. Final migrated results using the vector imaging condi-
tion based on polarization-based vector decomposition: (a) PP and
(b) PS images.
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CONCLUSIONS

For heterogeneous isotropic and TI media, we have proposed
new scalar and vector imaging conditions for 2D/3D ERTM. To
obtain physically interpretable images for PP or PS reflections,
polarization-based mode separation or vector decomposition is ap-
plied to the extrapolated elastic wavefields to provide single-mode
scalar or vector wavefields. To map the zero-lag ERTM images into
angle domain, the local phase directions of the incident qP-waves
and the interface normals are used to calculate the local incident
phase angle at every image point. For scalar imaging, the incident
phase angle is transformed from the group angle (indicated by the
Poynting vector), which is estimated from the extrapolated stress
and velocity fields at the maximum energy time. And the local in-
cident angle is directly used to correct the polarity reversals of the
PS images. For vector imaging, the incident phase angles are trans-
formed from the polarization angle, which is originally contained in
the decoupled vector fields. Because vector decomposition provides
high-fidelity single-mode wavefields, the resulting vector imaging
condition produces more accurate migration, of which the converted
wave images are immune to the polarity reversals.
For isotropic media, the two S-waves are inseparable during the

wave propagation. We assume the “symmetry-axis” is vertical so that
the algorithm can be generally used. Accordingly, these ERTM algo-
rithms become relatively easy because it takes nearly negligible
computational time for mode decoupling and there is no need to dis-
tinguish group, phase, and polarization directions for angular attribute
calculation. For TI media, thanks to the fast algorithms for mode
decoupling, we separate wave modes very efficiently and thus the

crosscorrelation imaging condition can be used to achieve accurate
imaging. The examples have demonstrated the validity and perfor-
mance of the two approaches. Although the mode decoupling algo-
rithm helps us to estimate the local angular attributes very effi-
ciently, it is still challenging to calculated the local group, phase,
and polarization directions of the complicated wavefields. We will
continue to improve this step for angle-domain ERTM in the future
work.
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APPENDIX A

POLARIZATION VECTORS IN TI MEDIA

For TI media, the P-wave and the two S-waves do not polarize
parallel or perpendicular to the wave vector. Generally, we obtain
the polarization vectors am by solving the material-dependent Chris-
toffel equation (Aki and Richards, 2002),

½G − ρV2I�am ¼ 0; (A-1)

where m ¼ fqP; qS1; qS2g, G is the Christoffel matrix Gij ¼
cijklkjkl, where cijkl is the stiffness tensor, and kj and kl are the
normalized wave vector components in the j and l directions,
i; j; k; l ¼ 1;2; 3. The parameter V corresponds to the eigenvalue of
the matrix G and represents the phase velocity of a given wave
mode. This equation allows us to compute the polarization vectors
am (the eigenvectors of the matrix), especially aP for the well-be-
haved qP-wave. As demonstrated by Winterstein (1990) and Zhang
and McMechan (2010), the qS1 and qS2 distinguished by phase
velocities do not always give consistent polarizations (the line sin-
gularity), Therefore, Zhang and McMechan (2011a) designate the
qS-wave as qSV and qSH modes, which always have consistent
polarizations except at the shear singularity along the symmetry
axis (Crampin and Yedlin, 1981). This shear singularity is the so-
called kiss singularity, due to the two S-waves having the same phase
velocity along the symmetry axis. Accordingly, qSH-waves polarize
perpendicular to the symmetry plane (polarizes in isotropy plane)
and qSV-waves polarize in the symmetry planes. Based on this
qP-qSV-qSH-polarization orthogonality (Figure A-1) and the calcu-
lated aP, the corresponding polarization vectors of two S-waves
can be obtained in the wavenumber domain (Yan and Sava, 2012),
yielding

Figure 20. Angle-domain CIGs at x ¼ 2; 3; 5; 7, and 8 km using the
vector imaging condition based on polarization-based vector de-
composition: (a) PP and (b) PS CIGs.
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aqSH ¼ n × aP and aqSV ¼ aP × aqSH; (A-2)

where n is a unit vector indicating the direction of symmetry axis.
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